

Física Experimental 1 Construção de Gráficos

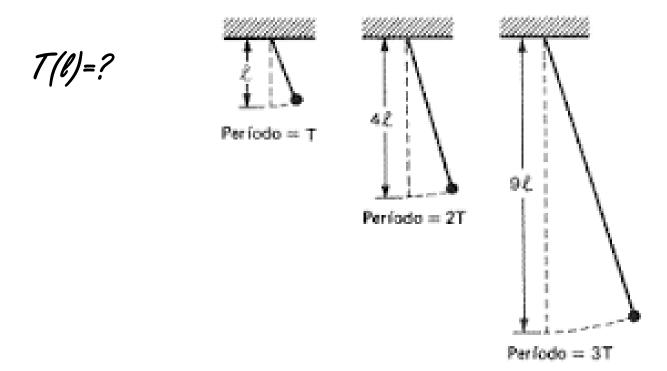
Prof. Dr. Walmor Cardoso Godoi

Departamento de Física
Universidade Tecnológica Federal do Paraná
http://www.walmorgodoi.com/utfpr

Introdução

Nas atividades experimentais, muitas vezes, objetiva-se estudar a maneira como uma propriedade, ou quantidade, varia com relação a uma outra quantidade, por exemplo:

"De que modo o comprimento de um pêndulo afeta o seu período?"



Introdução

• Tabelas

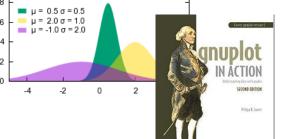
Distância	Tempo
(m)	(s)
0,10	0,775
0,20	1,325
0,30	1,873
0,40	2,525
0,50	3,073

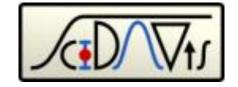
DESMATAMENTO DA AMAZÔNI				
Ano	Área (km²)			
2001	18.165			
2002	21.393			
2003	25.247			
2004	27.423			
2005	18.846			
2006	14.109			
2007	11.532			
2008	12.911			
2009	7.464			

	saneamento		le morta ntil (por		
pais	esgotamento abastecimento		anos de permanência das mães na escola		
adequado	de água	até 3	de 4 a 7	8 ou mais	
_	33	47	45,1	29,6	21,4
If	36	65	70,3	41,2	28,0
==	81	88	34,8	27,4	17,7
N	62	79	33,9	22,5	16,4
V	40	73	37,9	25,1	19,3

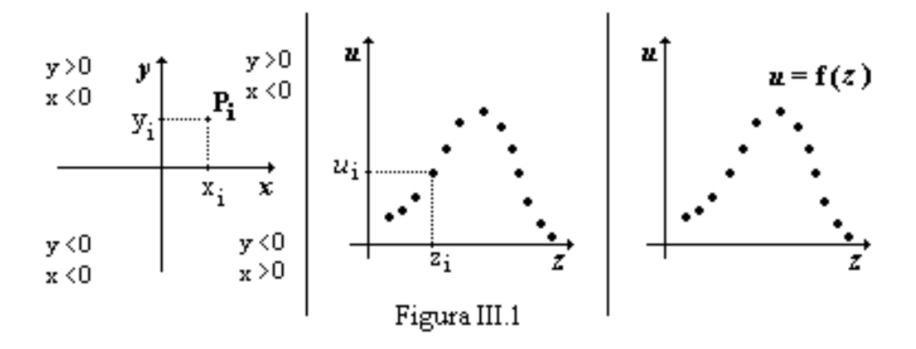
Gráficos

- Visualização Científica
- Comportamento de uma variável em relação a outra (2D, 3D, 4D, nD)
- Uso de papel milimetrado (linear), monolog, di-log
- Uso de computador: SciDavis, Origin, GnuPlot,





Sistemas de Coordenadas Cartesianas



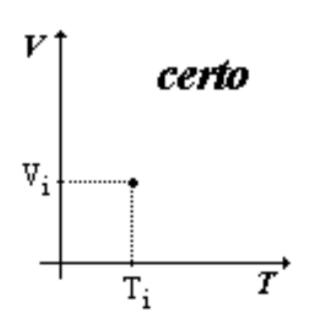
Observar quem é a variável independente (x)

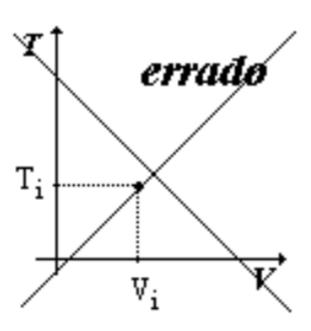
Exemplo 15: Em um experimento de dilatação volumétrica mediu-se o volume (V) de uma esfera para várias temperaturas (T), obtendo-se uma tabela de valores de V e de T, cujos dados foram anotados na tabela abaixo.

$V(10^{-9} \text{ m}^3)$	64,1	80,7	97,8	114,9	138,0	162,5	195,0	223,3	260,0
T (°C)	60,00	65,00	70,00	75,00	80,00	85,00	90,00	95,00	100,00
i	1	2	3	4	5	6	7	8	9

$$V(T) = y(x)$$

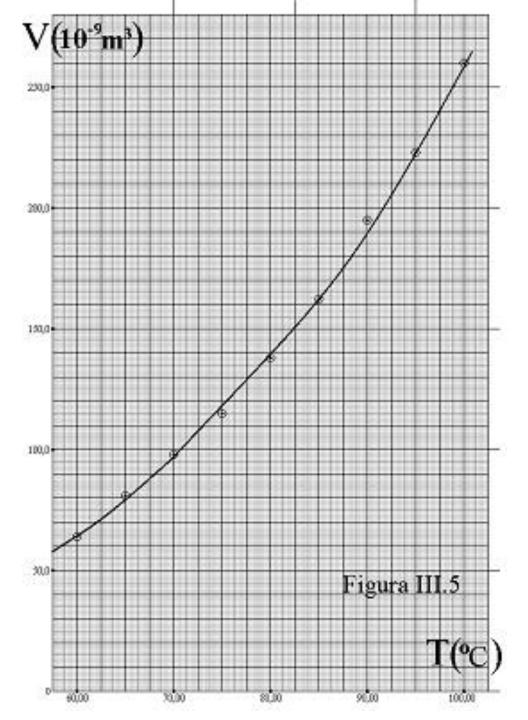
$$T = x$$





Gráficos

- Marcação dos pontos experimentais
- É fundamental que os pontos experimentais sejam bem marcados no gráfico e identificados por um sinal que não deixe dúvidas sobre sua localização.



• 1º - Montar a tabela e determinar Y (eixo vertical, variável dependente) e X (eixo horizontal, variável independente)

•	Exemp	lo: c	lados	do	MRUV
---	-------	-------	-------	----	------

Distância(m) Y	Tempo (s) X
0,1	0,391
0,2	0,548
0,3	0,668
0,4	0,770
0,5	0,860

• 1º - Montar a tabela (cont)

distância(m) Y	tempo (s) x	tempo² (s²) x
0,1	0,391	0,153
0,2	0,548	0,300
0,3	0,668	0,446
0,4	0,770	0,593
0,5	0,860	0,740

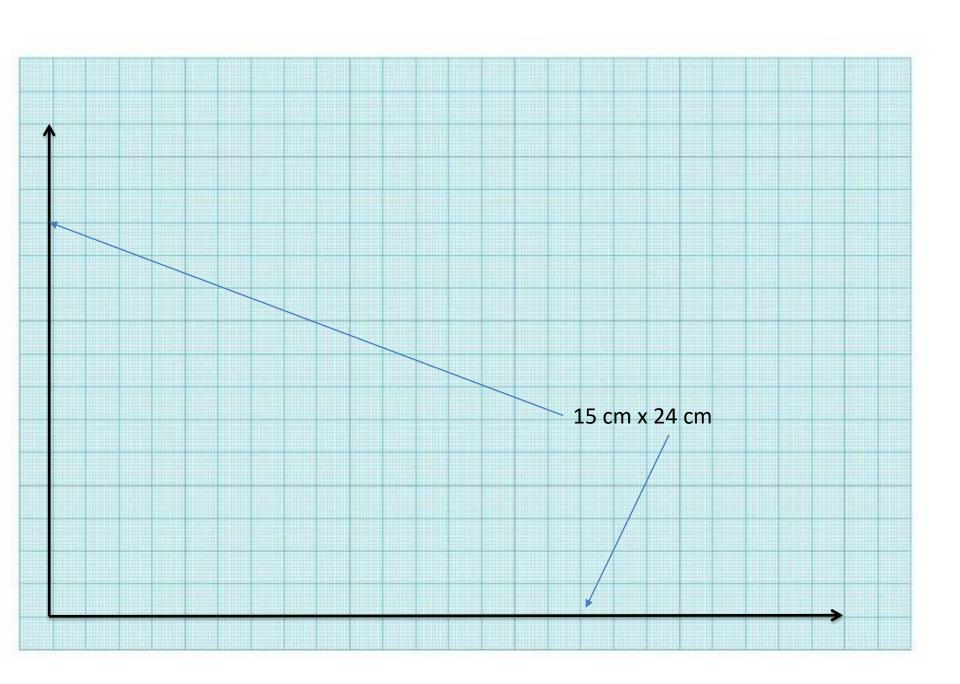
Para obter a aceleração no papel milimetrado vamos plotar d x t²

Pois

$$d = \frac{1}{2}at^{2}$$

$$Y=AX+B \text{ (equação da reta)}$$

- 2º definir o espaço disponível em
 - Y (por exemplo, 12 cm ou 15 cm)
 - X (por exemplo, 15 cm ou 24 cm)
 - Ou.... Ocupar todo o espaço disponível no papel deixando espaço para título nos eixos



3º. Definir o módulo em x (Mx) e y (My)
 (escala de conversão)

Módulo em Y (*My*)

$$My = \frac{\text{o espaço disponível em Y }(\textit{cm})}{\text{intervalo da grandeza física em y (unidade)}}$$

Módulo em X (Mx)

$$My = \frac{\text{o espaço disponível em X } (cm)}{\text{intervalo da grandeza física em x (unidade)}}$$

3º. Definir o módulo em x (Mx) e y (My)
 (escala de conversão)

Módulo em Y (My)

$$My = 15 \text{ cm} / (0.5\text{m} - 0.1\text{m}) = 37.5 \text{ cm/m}$$

Módulo em X (Mx)

 $Mx = 24 \text{ cm} / (0,740 \text{ m} - 0,153 \text{ m}) = 40,9 \text{ cm/s}^2$

distância(m) y	tempo² (s²) x
0,1	0,153
0,2	0,300
0,3	0,446
0,4	0,593
0,5	0,740

O módulo acima é um módulo prévio. O módulo final pode ser igual ou menor que o módulo prévio

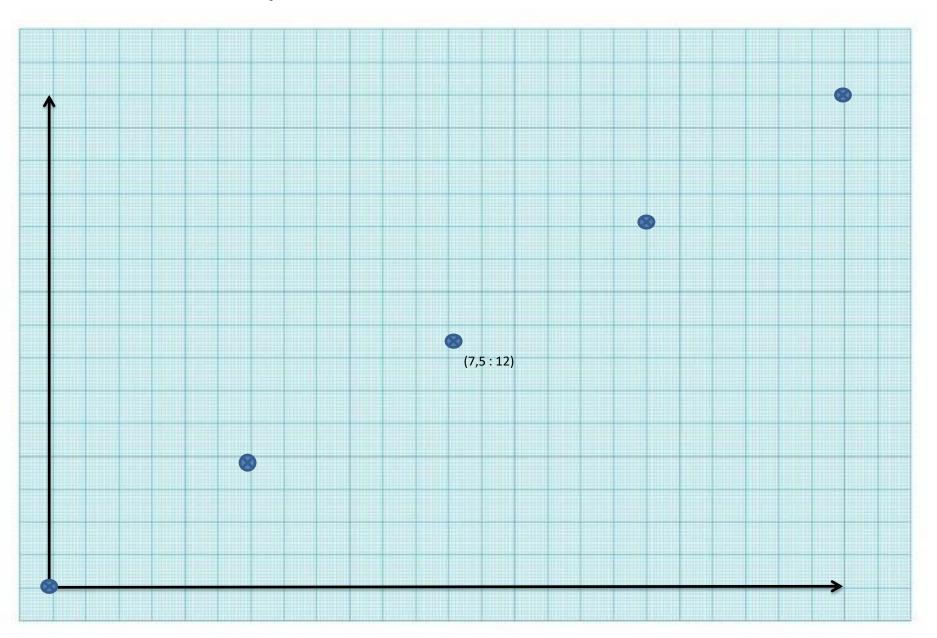
- 4º Com a escala converter as medidas para inserir os pontos (em cm), -> multiplicar cada medida pelo módulo
 - Verificar se não terá que ser aplicado offset
 - último ponto ultrapassa o espaço disponível no eixo? Se sim,
 subtrair de todas as medidas a primeira medida

$$My = 37.5 \text{ cm/m}$$
 $Mx = 40.9 \text{ cm/s}^2$

distância(m) y	tempo² (s²) x	Posição Ponto em Y cm	Posição Ponto em X cm
0,1	0,153	$(0,1-0,1) \times My = 0$	$(0,153-0,153) \times Mx = 0$
0,2	0,300	$(0,2-0,1) \times My = 3.8$	(0,300-0, 153) × Mx =6,0
0,3	0,446	(0,3- 0,1) × My =7,5	(0,446-0, 153) × Mx =12
0,4	0,593	$(0,4-0,1) \times My = 11,3$	(0,593-0, 153) × Mx =18
0,5	0,740	(0,5- 0,1) × My = 15	$(0,740-0, 153) \times Mx = 24$

Offset

5º - Marcar os pontos



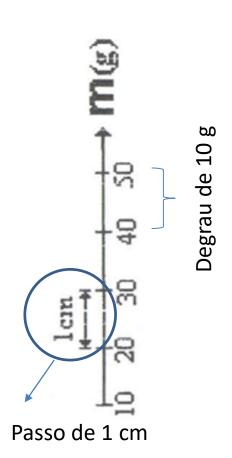
• 6°. Definir o passo e o degrau

Determinação do passo

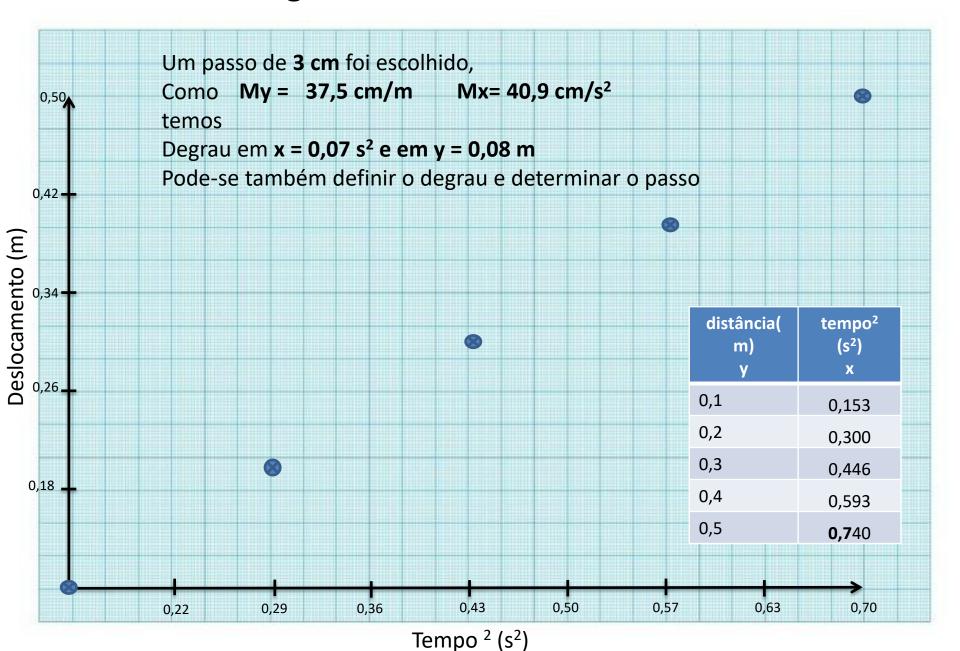
É a distância arbitrária entre divisões sucessivas que se repetirá a intervalos fixos sobre o eixo e é expresso em unidades de comprimento; veja a Figura ao lado.

Determinação do degrau

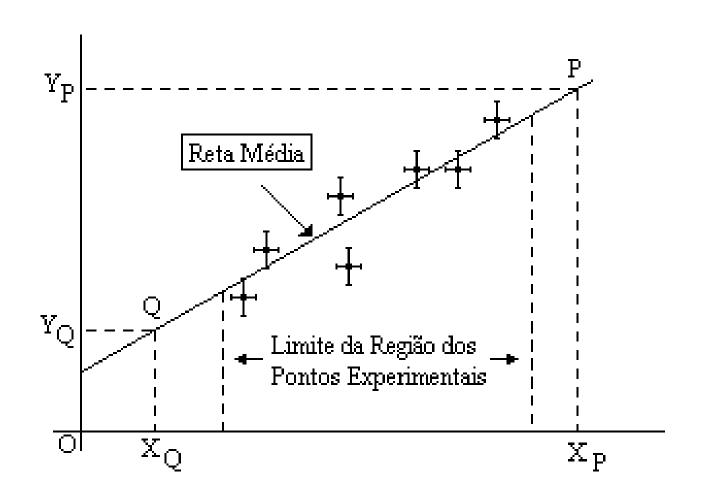
E a variação da grandeza física a ser representada, correspondendo à progressão de um passo e é expresso na mesma unidade da grandeza física a ser representada no eixo;



6º - Passo e degrau e título nos eixos

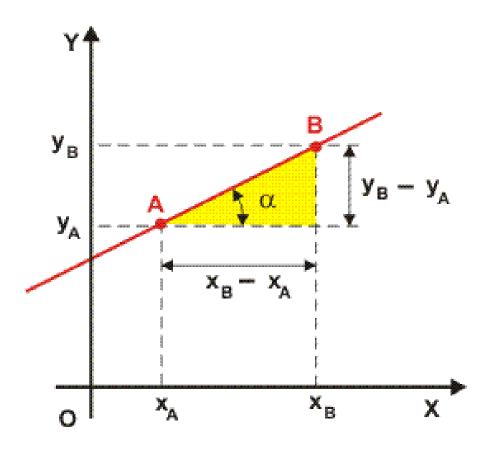


Relação Linear entre as grandezas



Cálculo do coeficiente angular

$$y = Ax + B$$



Não calcular pela tangente!

No triângulo amarelo

$$A = t \mathbf{g} \alpha = \frac{\mathbf{y}_{B} - \mathbf{y}_{A}}{\mathbf{x}_{B} - \mathbf{x}_{A}}$$

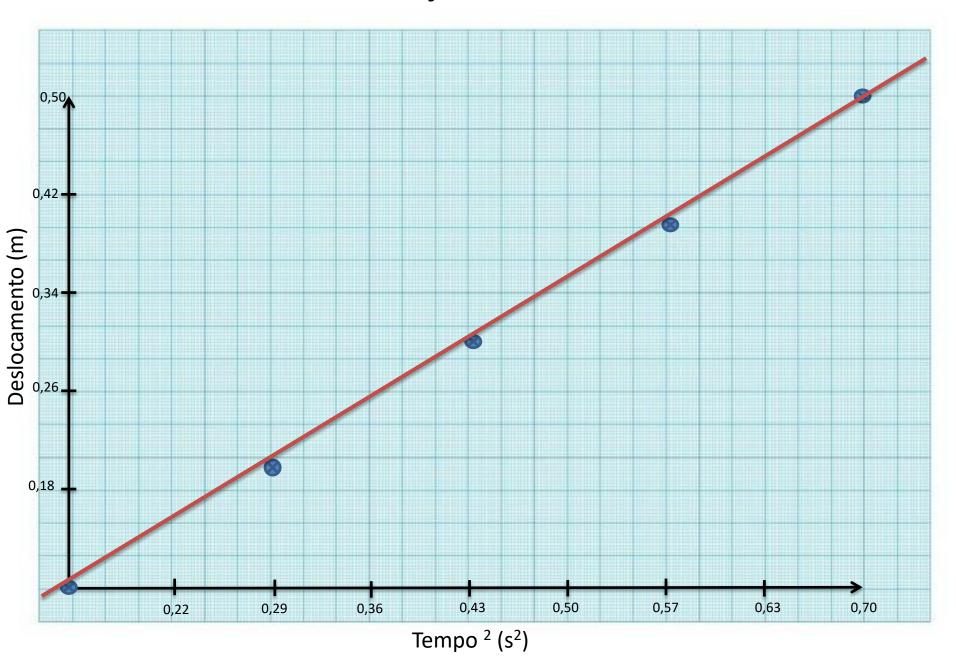
Determinação do coeficiente angular e linear da reta

Equação da reta

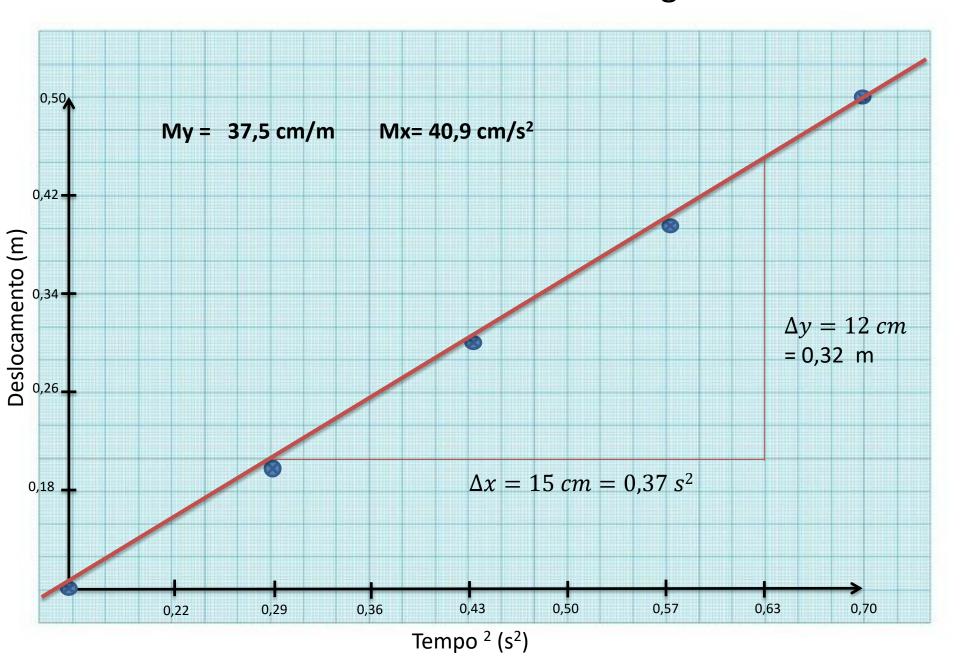
$$y = Ax + B$$

Coeficiente angular A e linear B

7º - Determinar a e b? Ajustar a reta



7º - Determinar a e b? Desenhar o triângulo



7º - Determinar a e b?

- Equação da reta no caso d x t²
- Coeficiente angular a

$$A = \frac{0.32 \text{ m}}{0.37 \text{ s}^2} = 0.86 \text{ m/s}^2$$
Metade da aceleração pois
$$d = \frac{1}{2}at^2$$

Coeficiente linear

$$y = Ax + B$$

Para obter b escolher dois pontos no gráfico b = y1 - ax1

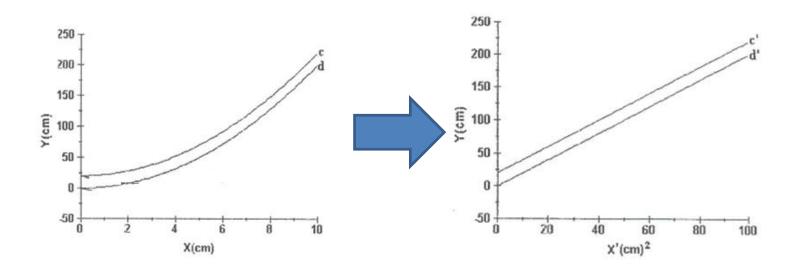
Linearização

O que fazer se as grandezas não têm relação linear?

Na maioria das vezes a relação entre duas grandezas físicas não é linear e é fundamental descobrir de que tipo é e quais são os parâmetros que caracterizam a relação entre as grandezas. Uma das maneiras de se fazer isso é linearizar o gráfico. Isto pode ser feito de dois modos:

- a) Fazendo uma mudança adequada de variável;
- b) Mudando o tipo de papel (monolog ou di-log) ou escala (no caso do uso do programa Excel).

Linearização de Gráficos



Exemplo: Mudança de Variável

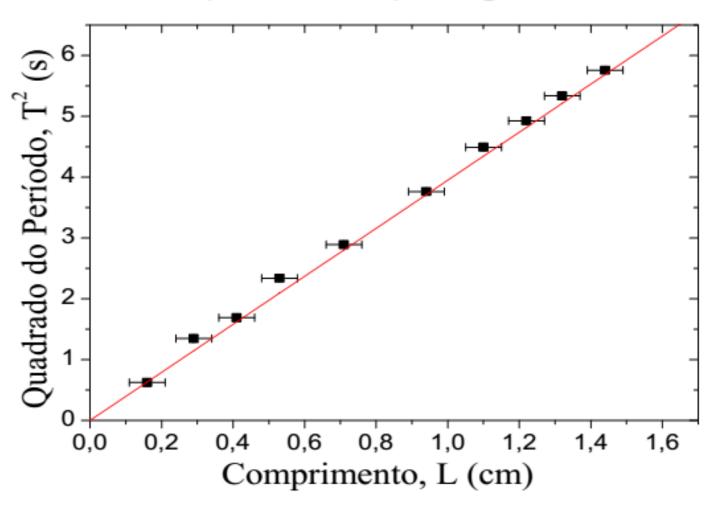
No caso de pêndulo simples sabemos que, sendo T o período, L o comprimento do fio e g a aceleração da gravidade local, então:

$$T = 2\pi \sqrt{\frac{L}{g}} \rightarrow T^2 = \frac{4\pi^2}{g} L \tag{4}$$

A Equação 4 mostra que a função matemática entre T^2 e L é linear, sendo $4\pi^2/g$ o coeficiente angular da reta. Vamos construir o gráfico de $T^2 \times L$ e verificar se isso acontece mesmo.

Exemplo: Mudança de Variável

Determinação da aceleração da gravidade



Exemplo: Mudança de Variável

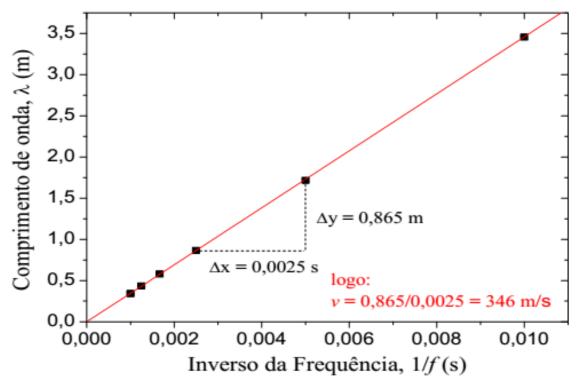
Escolhendo dois pontos do gráfico e procedendo como especificado anteriormente, encontraremos que a função matemática entre T^2 e L é $T^2 = 3,950$ L. Portanto, temos uma técnica para determinar a aceleração da gravidade, isto é:

$$\frac{4\pi^2}{g} = 3,950 \implies g = \frac{4\pi^2}{3,950} \implies g = 9,990 \text{ m/s}^2$$

Exemplo A velocidade do som v, a freqüência f e o comprimento de onda λ estão relacionadas por

$$v = \lambda. f \implies \lambda = \frac{v}{f} \implies \lambda = v. f^{-1}$$

Determinação da velocidade do som no ar



Escolhendo dois pontos do gráfico e procedendo como especificado no exemplo 3, encontraremos que a função matemática entre λ e 1/f é $\lambda = 346,0(1/f)$ Comparando com a Equação 5, obtemos a velocidade do som no ar:

$$v = 346,0 \, m/s$$

Linearização de gráficos

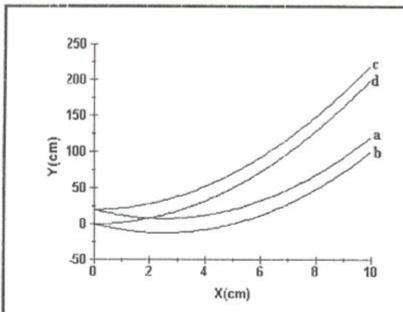


Figura 5.4 - Gráfico das funções do tipo $y(x) = ax^2 + bx + c$, correspondendo a:

a)
$$y(x) = 2x^2 - 10x + 20$$
; b) $Y(x) = 2x^2 - 10x$
c) $y(x) = 2x^2 + 20$; d) $Y(x) = 2x^2$

c)
$$y(x) = 2x^2 + 20$$
;

$$d) Y(x) = 2x^2$$

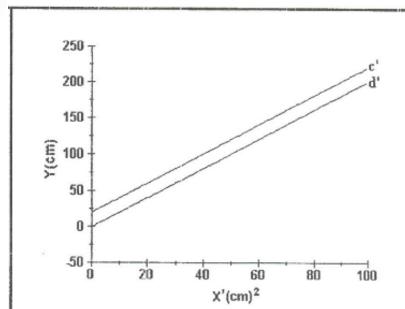


Figura 5.5 - Gráficos da linearização das curvas (c) e (d) da Fig. 5.4, fazendo a mudança de variável $X' = x^2$, tem-se:

c')
$$Y(X') = 2X' + 20$$

$$d') Y(X') = 2X'$$

Linearização

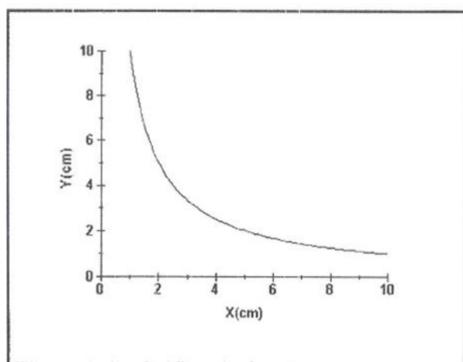


Figura 5.6 - Gráfico da função y(x) = a(1/x), mais especificamente Y(x) = 10/x

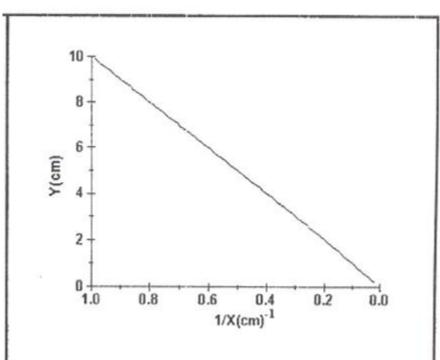
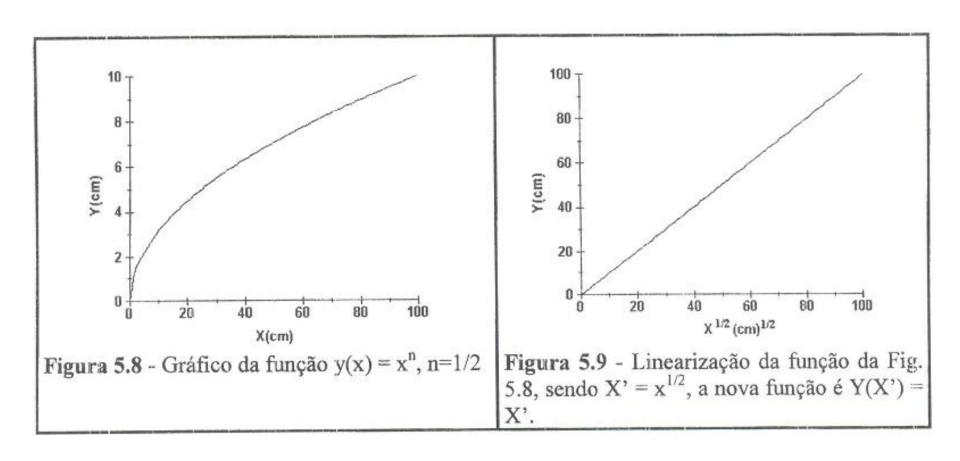


Figura 5.7 - Gráfico de linearização da função da Fig. 5.6, fazendo X' = 1/x, logo Y= 10X'.

Linearização



B) Mudando o tipo de papel (ou escala)

A Figura 2 mostra uma escala logarítmica maior, em que a graduação correspondente à origem do eixo é $g_0 = 1 \times 10^0$.

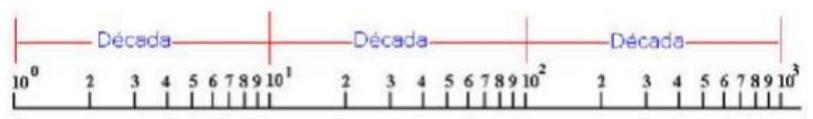


Figura 3. Representação das décadas em uma escala logarítmica.

Existem no mercado 2 tipos de papeis com escalas logarítmicas:

- Mono-log: um dos eixos é uma escala linear e o outro é uma escala logarítmica.
- Di-log: neste papel os dois eixos são escalas logarítmicas.

Gráfico do Papel Di-log (ou loglog)

Se a base não é <u>decimal ou exponencial</u> utiliza-se o papel dilog

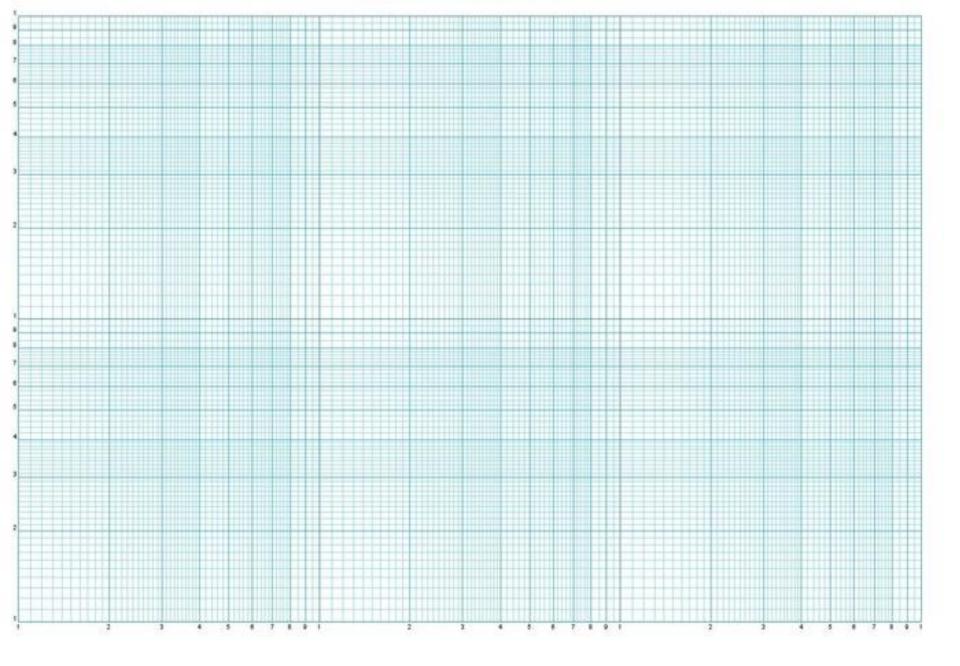
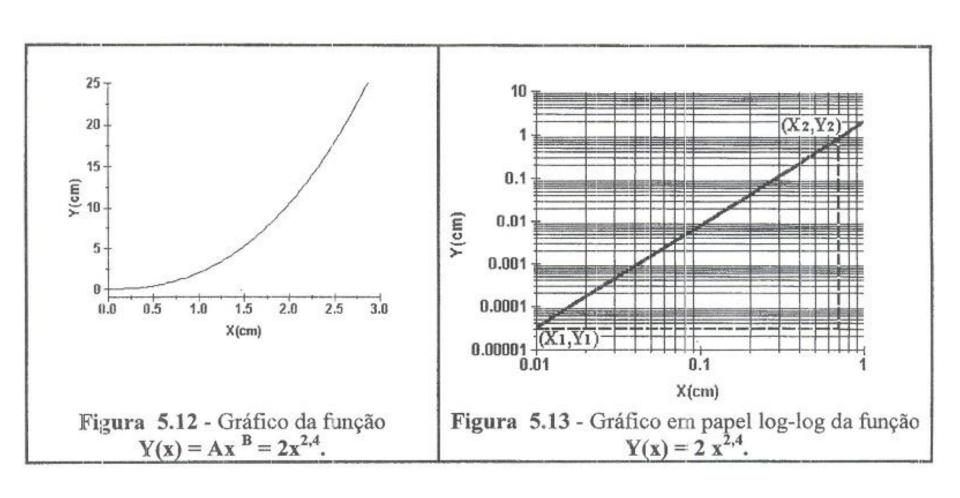


Gráfico em papel Di-log (log-log)



Papel Di-Log

 Se a base <u>não é</u> decimal ou exponencial utiliza-se o papel log-log

$$\log Y(x) = \log(Ax^{B}) = \log A + \log x^{B}$$
$$\log Y(x) = \log A + B \log x$$
$$Y'(x) = A' + B x'$$

() coeficiente angular será:
$$B = \frac{\log Y_2 - \log Y_1}{\log X_2 - \log X_1}$$

O coeficiente linear será:
$$log(Y_1) = A' + B .log(X_1)$$

• MRUV

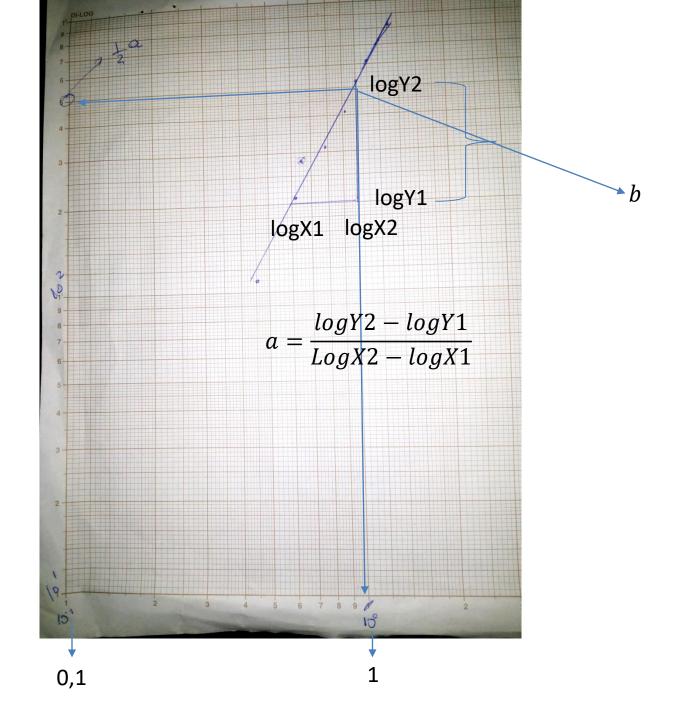
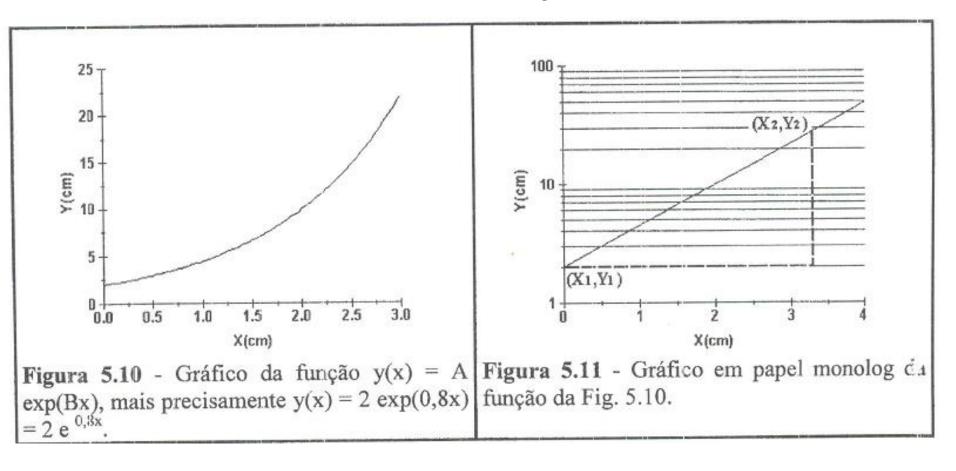
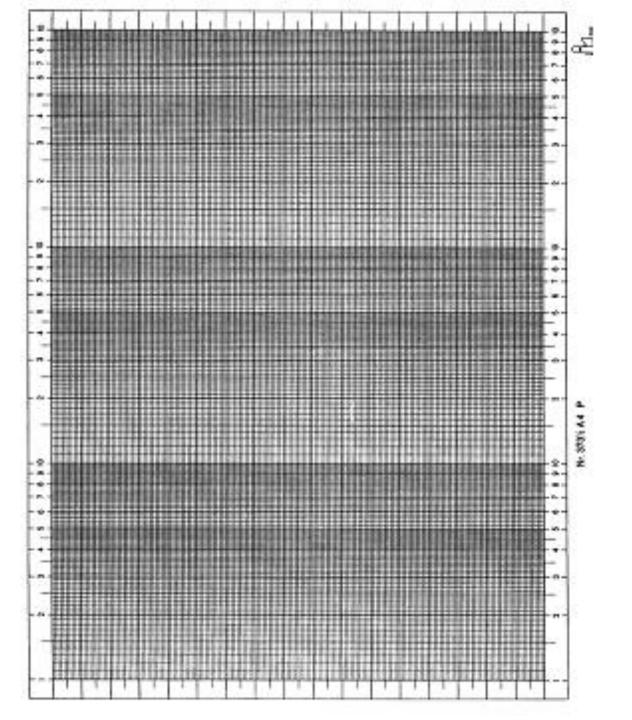


Gráfico em Papel Monolog

Se a base é decimal ou exponencial

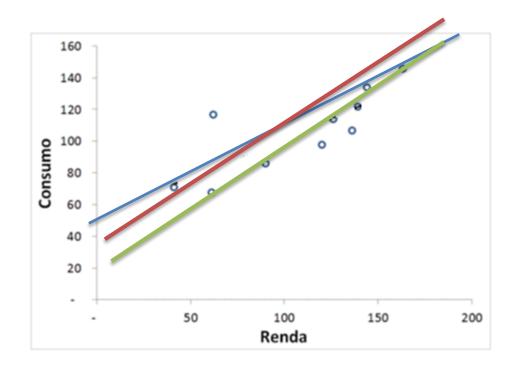


Papel monolog



Anexos

Método dos Mínimos Quadrados

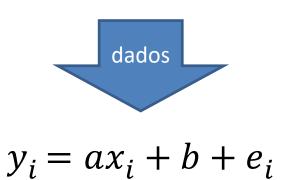


Método dos Mínimos Quadrados

Queremos estimar

$$y = \alpha x + \beta + \varepsilon$$

arepsilon: Erro - representa a variação de y que não é explicada pelo modelo.



$$y_i = ax_i + b + e_i$$

O método dos mínimos quadrados minimiza a soma dos quadrado dos resíduos, ou seja, minimiza $\sum_{i=1}^n e_i^2$

$$e_i = y_i - b - ax_i$$

$$S(a,b) = \sum_{i=1}^{n} (y_i - b - ax_i)^2$$

$$\frac{\partial S}{\partial a} = -2\sum_{i=1}^{n} (y_i - b - ax_i) = 0 \tag{01}$$

$$\frac{\partial S}{\partial b} = -2\sum_{i=1}^{n} x_i \left(y_i - b - \dot{a}x_i \right) = 0 \tag{02}$$

Na equação 02, distribuindo o somatório e dividindo por 2n teremos

$$\frac{-2\sum_{i=1}^{n}(y_i-b-ax_i)}{2n}=\frac{0}{2n}$$

$$\frac{-2\sum_{i=1}^{n} (y_i - b - ax_i)}{2n} = \frac{0}{2n}$$

$$\frac{-\sum_{i=1}^{n} y_i + \sum_{i=1}^{n} b + \sum_{i=1}^{n} ax_i}{n} = 0$$

$$\frac{-\sum_{i=1}^{n} y_i}{n} + \frac{b\sum_{i=1}^{n} 1}{n} + \frac{a\sum_{i=1}^{n} x_i}{n} = 0$$

$$-\bar{y} + b + a\bar{x} = 0$$

 $\sum_{i=m}^{n} 1 = n+1-m$

$$b = \bar{y} + a\bar{x} \quad (03)$$

$$b = \bar{y} + a\bar{x} \quad (03)$$

Substituindo a equação 03 na equação 01 e isolando a teremos

$$a = \frac{\sum_{i=1}^{n} x_i (y_i - \bar{y})}{\sum_{i=1}^{n} x_i (x_i - \bar{x})}$$
 (04)

Dica para obter a e b

Dica: Monte a tabela abaixo. No exemplo, dados do MRU

y_i	x_i	$(y_i - \overline{y})$	$(x_i - \overline{x})$	$x_i(y_i-\overline{y})$	$x_i(x_i-\overline{x})$
0,10	0,775				
0,20	1,325				
0,30	1,873				
0,40	2,525				
0,50	3,073				
<u></u> <i>y</i> =0,3	<i>x</i> =1,914				

$$a = \frac{\sum_{i=1}^{n} x_i (y_i - \bar{y})}{\sum_{i=1}^{n} x_i (x_i - \bar{x})}$$

$$b = \bar{y} + a\bar{x}$$

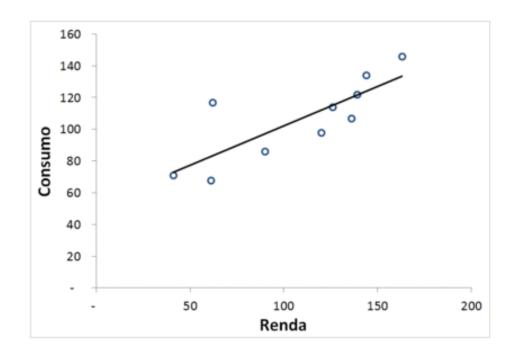
Após obter a e b pelo MMQ, use esses novos a e b e os xi's para obter os novos yi's

$$y_i = ax_i + b$$



Considere a seguinte base de dados:

i	y Consumo	x Renda
1	122	139
2	114	126
3	86	90
4	134	144
5	146	163
6	107	136
7	68	61
8	117	62
9	71	41
10	98	120



Aplicando as fórmulas acima, chega-se em:

$$a \ = \frac{7.764,40}{15.671,60} = 0,4954$$

$$b \ = 106,30-0,4954\times108,20 = 52,69$$
 portanto,

$$Consumo = 0,4954 \times Renda + 52,69$$

Interpretação: Tirando a parte do Consumo que não é influenciada pela Renda, o incremento de \$ 1 na Renda causa um incremento esperado de \$ 0,4954 no Consumo.

Fazendo o gráfico dos resultados da tabela 1 com a tabela 3 temos:

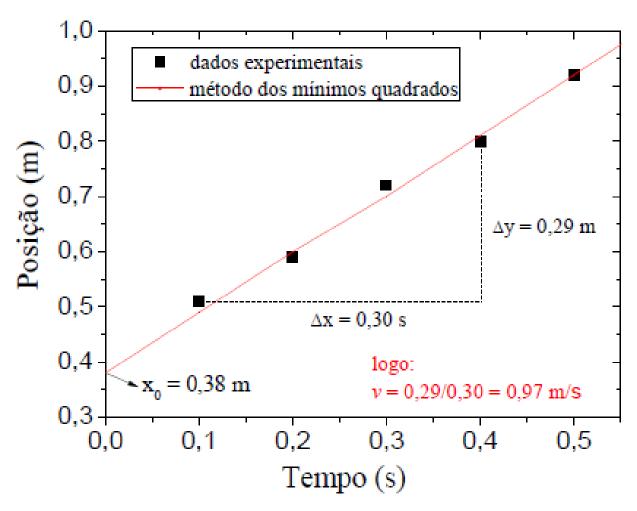


Figura 1. Evolução da posição do móvel em função do tempo.

Observe que o valor da velocidade calculado pelos dados da tabela 1 é igual a 0,97 m/s enquanto que para a curva determinada pelo método dos mínimos quadrados é de 1,08 m/s, ou seja, este é o valor mais próximo do valor real da velocidade do carrinho.

Exercício

• Fazer o gráfico de M x V e obter a densidade

Υ	Х
Massa(g)	Volume (cm3)
37,96	4,9
99,96	12,25
124,53	15,98
202,65	26,10
259,63	33,24

Referências

- Vuolo, J. H. Fundamentos da teoria de erros,
 2ª edição, Ed. Edgard Blucher, São Paulo,
 1996.
- Apostila Física Experimental UFPR